Section 9.5 Comparison, Ratio, and Root Tests
Subsection 9.5.1 Comparison Test
Suppose \(0 \leq a_n \leq b_n\) for all \(n\) beyond a certain point.
if \(\displaystyle \sum_{n = 1}^{\infty}b_n\) converges then \(\displaystyle \sum_{n = 1}^{\infty}a_n\) converges
if \(\displaystyle \sum_{n = 1}^{\infty}a_n\) diverges then \(\displaystyle \sum_{n = 1}^{\infty}b_n\) diverges
Example 9.5.1.
Given the series \(\displaystyle \sum_{n = 1}^{\infty} \dfrac{1}{n^{3}+1}\text{,}\) let's guess that it converges. We now need something bigger that converges.
Note 9.5.1.
TIP: \(\dfrac{\text{top smaller}}{\text{bottom bigger}} \lt \dfrac{\text{top}}{\text{bottom}} \lt \dfrac{\text{top bigger}}{\text{bottom smaller}}\)
One option is using the series \(\displaystyle \sum_{n = 1}^{\infty} \dfrac{1}{n^3}\text{.}\) We know this is a p-series so:
Subsection 9.5.2 Limit Comparison Test
We really only care about series as \(n\) becomes large, so rather than a direct comparison, we can do a limit comparison.
Suppose \(a_n gt 0\) and \(b_n \gt 0\) for all \(n\) if
then both \(\displaystyle \sum a_n\) and \(\displaystyle \sum b_n\) converge or both diverge.
Example 9.5.2.
Determine if \(\displaystyle \sum_{n = 1}^{\infty} \dfrac{n^2 - 5}{n^3 + n + 2}\) converges or diverges:
Subsection 9.5.3 Ratio Test
For a series \(\sum a_n\) suppose
if \(L \lt 1\) then \(\sum a_n\) converges
if \(L \gt 1\) then \(\sum a_n\) diverges
if \(L = 1\) then the test is inconclusive
Example 9.5.3.
Determine if \(\displaystyle \sum_{n = 1}^{\infty} \dfrac{1}{n!}\) converges or diverges using the ratio test:
Subsection 9.5.4 Root Test
For a series \(\displaystyle \sum a_n\) with positive terms, suppose
if \(L \lt 1\text{,}\) then \(\displaystyle \sum a_n\) converges
if \(L \gt 1\text{,}\) then \(\displaystyle \sum a_n\) diverges
if \(L = 1\text{,}\) then the test is inconclusive
Example 9.5.4.
Determine if \(\displaystyle \sum_{n=1}^{\infty} \left( \dfrac{4n-5}{2n+1} \right)^n\) converges or diverges: