Skip to main content

Section 4.5 Definite Integrals with U-Substitution

There are two different strategies to perform u-substitution:

  • focus on u-substitution, temporarily ignore the limits of integration, then convert back to x

    Find \(\displaystyle \int_0^2 x (x^2 + 1)^3 dx\text{:}\)

    1. Focus on u-substitution:

      \begin{align*} u \amp = x^2 + 1\\ du \amp = 2x dx \end{align*}
    2. Temporarily ignore limits of integration:

      \begin{align*} \int^*_* \underbrace{(x^2 + 1)^3}_{u^3} \cdot \underbrace{xdx}_{\frac{1}{2}du} \amp = \int^*_* u^3 \cdot \frac{1}{2} du \\ \amp = \frac{1}{2} \left( \dfrac{u^4}{4} \right) \Big|_*^* \end{align*}
    3. Limits reappear:

      \begin{align*} \frac{1}{8} \left( x^2 + 1 \right)^4 \Big|_0^2 \amp = \frac{1}{8} (2^2 + 1)^4 - \frac{1}{8}(0^2 + 1^4)\\ \amp = 78 \end{align*}

  • or, change the limits after performing u-substitution.

    Find \(\displaystyle \int_0^2 x (x^2 + 1)^3 dx\text{:}\)

    1. Change limits:

      \begin{align*} u \amp = x^2 + 1 \\ du \amp = 2xdx \end{align*}
      \begin{equation*} \begin{cases} x = 0, \amp u = 0^2 + 1 \amp = 1\\ x = 2, \amp u = 2^2 + 1 \amp = 5 \end{cases} \end{equation*}
    2. Rewrite integral:

      \begin{align*} \int_{x = 0}^{x = 2} (x^2 + 1)^3 x dx \amp = \int_{u = 5}^{u = 1} u^3 \cdot \frac{1}{2} du \\ \amp = \frac{1}{2} \left( \dfrac{u^4}{4} \right) \Big|_1^5\\ \amp = \frac{1}{8} (5^4) - \frac{1}{8} (1^4) \\ \amp = \frac{625}{8} - \frac{1}{8}\\ \amp = 78 \end{align*}

Example 4.5.1.

Solve \(\displaystyle \int_1^2 \sqrt{5x - 1} dx\text{:}\)

Ignore Limits

\begin{align*} u \amp = 5x - 1\\ du \amp = 5dx \end{align*}
\begin{align*} \int_1^2 \sqrt{5x-1} dx \amp = \int_*^* u^{\frac{1}{2}} \cdot \frac{1}{5} du\\ \amp = \frac{1}{5} \left( \dfrac{u^{\frac{3}{2}}}{\frac{3}{2}} \right) \Big|_*^*\\ \amp = \frac{1}{5} \cdot \frac{2}{3} ( 5x - 1 )^{\frac{3}{2}} \Big|_1^2 \\ \amp = \frac{2}{15} ( 5(2) - 1 )^{\frac{3}{2}} - \frac{2}{15} ( 5(1) - 1 )^{\frac{3}{2}}\\ \amp = \frac{2}{15} ( 9^{\frac{3}{2}} - 4^{\frac{3}{2}} )\\ \amp = \frac{38}{15} \end{align*}

Change Limits

\begin{align*} u \amp = 5x - 1\\ du \amp = 5dx \end{align*}
\begin{equation*} \begin{cases} x = 1, \amp u = 5(1) - 1 \amp = 4\\ x = 2, \amp u = 5(2) = 1 \amp = 9 \end{cases} \end{equation*}
\begin{align*} \int_{x = 1}^{x = 2} \sqrt{5x - 1} dx \amp = \int_{u = 4}^{u = 9} u^{\frac{1}{2}} \cdot \frac{1}{5} du \\ \amp = \frac{1}{5} \int_4^9 u^{\frac{1}{2}} du\\ \amp = \frac{1}{5} \left( \dfrac{u^{\frac{3}{2}}}{\frac{3}{2}} \right) \Big|_4^9\\ \amp = \frac{1}{5} \cdot \frac{2}{3} (u^{\frac{3}{2}}) \Big|_4^9 \\ \amp = \frac{2}{15} (9^{\frac{3}{2}}) - \frac{2}{15}(4^{\frac{3}{2}}) \\ \amp = \frac{38}{15} \end{align*}