Section 4.5 Definite Integrals with U-Substitution
There are two different strategies to perform u-substitution:
-
focus on u-substitution, temporarily ignore the limits of integration, then convert back to x
Find \(\displaystyle \int_0^2 x (x^2 + 1)^3 dx\text{:}\)
-
Focus on u-substitution:
\begin{align*} u \amp = x^2 + 1\\ du \amp = 2x dx \end{align*} -
Temporarily ignore limits of integration:
\begin{align*} \int^*_* \underbrace{(x^2 + 1)^3}_{u^3} \cdot \underbrace{xdx}_{\frac{1}{2}du} \amp = \int^*_* u^3 \cdot \frac{1}{2} du \\ \amp = \frac{1}{2} \left( \dfrac{u^4}{4} \right) \Big|_*^* \end{align*} -
Limits reappear:
\begin{align*} \frac{1}{8} \left( x^2 + 1 \right)^4 \Big|_0^2 \amp = \frac{1}{8} (2^2 + 1)^4 - \frac{1}{8}(0^2 + 1^4)\\ \amp = 78 \end{align*}
-
-
or, change the limits after performing u-substitution.
Find \(\displaystyle \int_0^2 x (x^2 + 1)^3 dx\text{:}\)
-
Change limits:
\begin{align*} u \amp = x^2 + 1 \\ du \amp = 2xdx \end{align*}\begin{equation*} \begin{cases} x = 0, \amp u = 0^2 + 1 \amp = 1\\ x = 2, \amp u = 2^2 + 1 \amp = 5 \end{cases} \end{equation*} -
Rewrite integral:
\begin{align*} \int_{x = 0}^{x = 2} (x^2 + 1)^3 x dx \amp = \int_{u = 5}^{u = 1} u^3 \cdot \frac{1}{2} du \\ \amp = \frac{1}{2} \left( \dfrac{u^4}{4} \right) \Big|_1^5\\ \amp = \frac{1}{8} (5^4) - \frac{1}{8} (1^4) \\ \amp = \frac{625}{8} - \frac{1}{8}\\ \amp = 78 \end{align*}
-
Solve \(\displaystyle \int_1^2 \sqrt{5x - 1} dx\text{:}\) Ignore Limits Change Limits
Example 4.5.1.