Skip to main content

Section 2.3 Products and Quotients of Functions

Let \(f(x) = 3x^2\) and \(g(x) = 4x^3\text{.}\) Find \(f'(x)\text{,}\) \(g'(x)\text{,}\) and \(\dfrac{d}{dx} \left( f(x) \cdot g(x) \right)\text{:}\)

\begin{equation*} f'(x) = \dfrac{d}{dx} (3x^2) = 6x \end{equation*}
\begin{equation*} g'(x) = \dfrac{d}{dx} (4x^3) = 12x^2 \end{equation*}
\begin{align*} \dfrac{d}{dx} \left( f(x) \cdot g(x) \right) \amp = \dfrac{d}{dx}\left( (3x^2) (4x^3) \right)\\ \amp = \dfrac{d}{dx}(12x^5)\\ \amp = 60x^4 \end{align*}
Example 2.3.1.

Find \(f'(x)\) for \(f(x) = \sqrt{x}(3x^2 + 7)\)

\begin{align*} f'(x) \amp = \dfrac{d}{dx} \left( \sqrt{x}(3x^2 + 7) \right) \\ \amp = \sqrt{x} \cdot \dfrac{d}{dx}(3x^2 + 7) + (3x^2 + 7) \cdot \dfrac{d}{dx}(\sqrt{x}) \\ \amp = \sqrt{x} (6x) + (3x^2 + 7)(\dfrac{1}{2}x^{-\frac{1}{2}})\\ \amp = \sqrt{x} (6x) + \dfrac{3x^2 + 7}{2\sqrt{x}} \end{align*}
Example 2.3.2.

Find \(\dfrac{d}{dx} \left( \dfrac{1}{x^5} \right)\text{:}\)

\begin{align*} \dfrac{d}{dx}\left( \dfrac{1}{x^5} \right) \amp = \dfrac{x^5 \cdot \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(x^5)}{(x^5)^2}\\ \amp = \dfrac{x^5 (0) - 1 (5x^4)}{x^{10}}\\ \amp = -\dfrac{5x^4}{x^{10}}\\ \amp = -\dfrac{5}{x^6} \end{align*}