Skip to main content

Section 9.7 Maclaurin and Taylor Polynomials

If we go back to what we learned in Calculus I, what is the equation of the tangent line for \(f(x)\) at \(x = a\text{?}\)

\begin{equation*} y = f(a) = f'(a) (x - a) \end{equation*}

We also know that the tangent line approximation near \(x = a\) is

\begin{equation*} f \approx f(a) + f'(a)(x - a) \end{equation*}

If we wanted the exact value we need to add an error term. With this added we get:

\begin{equation*} f(x) = f(a) + f'(a)(x - a) + \overbrace{E_1(x)}^{\text{error term}} \end{equation*}

The error term in this equation would be:

\begin{equation*} E_1(x) \approx \dfrac{f''(a)}{2}(x - a)^2 \end{equation*}

We continue this trend in Calculus II. To get a closer approximation we can use:

\begin{equation*} f \approx f(a) + f'(a)(x - a) + \dfrac{f''(a)}{2}(x - a)^2 \end{equation*}

In order for this to be exact we would need to add another error term:

\begin{equation*} f(x) = f(a) + f'(a)(x - a) + \dfrac{f''(a)}{2}(x - a)^2 + E_2(x) \end{equation*}

where \(E_2(x)\) is

\begin{equation*} E_2(x) \approx \dfrac{f'''(a)}{6}(x - a)^3 \end{equation*}
Definition 9.7.1.

A Taylor Polynomial of degree \(n\) appoximating \(f(x)\) for \(x\) near \(a\) (centered at \(x = a\)):

\begin{equation*} f(x) \approx P_n(x) = f(a) + f'(a)(x - a) + \dfrac{f''(a)}{2!}(x - a)^2 + \dots \dfrac{f^{(n)}}{n!}(x - a)^n \end{equation*}

NOTE: when centered at \(x = 0\text{,}\) this is also called the degree \(n\) Maclaurin Polynomial

Example 9.7.1.

Find the degree \(1, 5, \text{ and } 6\) Taylor Polynomials for \(f(x) = \cos(x)\) centered around \(x = 0\text{:}\)

\begin{align*} f(x) \amp = \cos(x)\\ f'(x) \amp = - \sin(x)\\ f''(x) \amp = - \cos(x) \\ f'''(x) \amp = \sin(x) \\ f^{(4)}(x) \amp = \cos(x)\\ f^{(5)}(x) \amp = - \sin(x)\\ f^{(6)}(x) \amp = - \cos(x) \end{align*}
\begin{align*} f(0) \amp = 1\\ f'(0) \amp = 0\\ f''(0x) \amp = -1 \\ f'''(0x) \amp = 0 \\ f^{(4)}(0) \amp = 1\\ f^{(5)}(0) \amp = 0\\ f^{(6)}(0) \amp = -1 \end{align*}
\begin{align*} P_1(x) \amp = 1 + 0(x - 0)\\ \amp = 1\\ \amp\\ P_5(x) \amp = 1 + 0(x - 0) + \dfrac{-1}{2!}(x - 0)^2 + \dfrac{0}{3!}(x - 0)^3 + \dfrac{1}{4!}(x - 0)^4 + \dfrac{0}{5!}(x - 0)^5\\ \amp = 1 - \dfrac{1}{2!}x^2 + \dfrac{1}{4!}x^4\\ \amp\\ P_6(x) \amp = 1 - \dfrac{1}{2!}x^2 + \dfrac{1}{4!}x^4 + \dfrac{-1}{6!}(x-0)^6\\ \amp = 1 - \dfrac{1}{2!}x^2 + \dfrac{1}{4!}x^4 - \dfrac{1}{6!}x^6 \end{align*}