Skip to main content

Section 3.3 Absolute Extrema

Definition 3.3.1.

Consider an interval in the domain of a function \(f\) and a point \(x_0\text{.}\)

  • \(f\) has an absolute maximum at \(x_0\) if \(f(x) \leq f(x_0)\) for all \(x\) in the interval.

  • \(f\) has an absolute minimum at \(x_0\) if \(f(x) \geq f(x_0)\) for all \(x\) in the interval.

  • \(f\) has an absolute extrema at \(x_0\) if \(f\) has either of the above at that point.

Example 3.3.1.

Figure 3.3.2.

Absolute minimum on \(( - \infty, \infty)\text{,}\) no absolute maximum.

Figure 3.3.3.

No exrema on \(( - \infty, \infty)\text{.}\)

Figure 3.3.4.

Absolute maximum and absolute minimum on \((- \infty, \infty)\text{.}\)

Example 3.3.2.

Find the absolute extrema of \(f(x) = 2x^6 - 4x^3\) on the interval \([-1,1]\text{:}\)

(\(f\) has critical points at \(x = 0,1\))

Type \(x\) \(f(x)\) Result
EP \(-1 \) \(6 \) absolute maximum on \([-1,1]\)
CP \(0\) \(0\) -----
EP/CP \(1\) \(-2\) absolute minimum on \([-1,1]\)
Note 3.3.6.

Changing the interval is likely to change the answer.