Section 9.1 Sequences
A sequence is an infinite list of numbers:
Definition 9.1.1.
Example 9.1.2.
We can think of the previous example ( \(a_n = n^2\) ) as a function:
These functions are writen in one of two ways:
recursive -- uses the previous term to define the following term
closed form -- non-recursive
Brace Notation.
\(\displaystyle \frac{1}{2}, \quad \frac{2}{5}, \quad \frac{7}{10}, \quad \frac{15}{17} \dots\)
\(\displaystyle a_n = \dfrac{2^n - 1}{n^2 + 1}\)
The sequence \(a_1, a_2, \dots, a_n\) has a limit, \(L\text{,}\) written:
if \(a_n\) can be made as close to \(L\) as we like by taking n large enough.
If such \(L\) exists, we say the sequence
converges
to \(L\)If it doesn't, we say the sequence
diverged
.-
Suppose:
\begin{align*} \amp \left\{ a_n \right\}_{n = 1}^{\infty} \text{ converges to } L_1 \\ \amp \left\{ b_n \right\}_{n = 1}^{\infty} \text{ converges to } L_2\\ \amp c \text{ is a constant} \end{align*}\(\displaystyle \displaystyle \lim_{n\to\infty} c = c\)
\(\displaystyle \displaystyle \lim_{n\to\infty} ca_n = c \left( \displaystyle \lim_{n\to\infty} a_n \right) = cL_1\)
\(\displaystyle \displaystyle \lim_{n\to\infty} \left( a_n \pm b_n \right) = L_1 + L_2\)
\(\displaystyle \displaystyle \lim_{n\to\infty} \left( a_n b_n \right) = L_1 L_2\)
\(\displaystyle \displaystyle \lim_{n\to\infty} \dfrac{a_n}{b_n} = \dfrac{L_1}{L_2} \text{ provided } L_2 \neq 0\)
General Sequence Facts.
\(\displaystyle a_n = x^n \begin{cases} \text{converges to } 0 \text{ if } \mid x \mid \lt 1\\ \text{diverges if } \mid x \mid \gt 1 \end{cases}\)
\(\displaystyle a_n = \frac{1}{n^P} \begin{cases} \text{converges to } 0 \text{ if } P \gt 0\\ \text{diverges if } P \lt 0 \end{cases}\)
Example 9.1.1.
Consider \(a_n = \frac{n}{e^n}\) and determine if it converges or diverges:
\(\displaystyle \lim_{n\to\infty} \frac{n}{e^n} = \frac{\infty}{\infty} \text{ indeterminate form}\)
When we use \(x\) the variable is considered continuous (not skipping) but \(n\) is descrete (only integrers). Since \(n\) is not continuous, we can't use L'Hopital's Rule directly. We have to extend the domain
from \(n\) to \(x\text{.}\)
\(\displaystyle \lim_{x\to\infty} \frac{x}{e^x} = \displaystyle \lim_{x\to\infty} \frac{1}{e^x} = \displaystyle \lim_{x\to\infty} \frac{1}{\infty} = 0\)
This will always equal to \(\displaystyle \lim_{n\to\infty} \frac{n}{e^n}\text{.}\)
We simply write:
but know we skipped steps.