Skip to main content

Section 2.4 Trig Functions

Let's review the unit circle:

Figure 2.4.1. Unit Circle

A point on the circle has coordinates (x,y)=(cos(θ),sin(θ)).

  • (42,02)=2π or 0

  • (32,12)=π6

  • (22,22)=π4

  • (12,32)=π3

  • (02,42)=π

To calculate derivatives, all we know is the limit definition. Let's calculate the derivative of cos(x):

ddx(cos(x))=limh0cos(x+h)cos(x)h=limh0cos(x)cos(h)sin(x)sin(h)cos(x)h=limh0cos(x)(1cos(h)h)sin(x)(1sin(h)h)=cos(x)(limh01cos(h)h)sin(x)(limh01sin(h)h)=cos(x)(0)sin(x)(1)=sin(x)

Similarly, ddx(sin(x))=cos(x)

Let's try finding the derivative of tan(x) using the quotient rule:

ddx(tan(x))=ddx(sin(x)cos(x))=cos(x)ddx(sin(x))sin(x)ddx(cos(x))(cos(x))2=cos(x)cos(x)sin(x)(sin(x))(cos(x))2=cos2(x)+sin2(x)cos2(x)=1cos2(x)=sec2(x)

Similarly, ddx(cot(x))=csc2(x)

So far:

Table 2.4.2. Trig Function Derivatives
ddx(sin(x))=cos(x)
ddx(cos(x))=sin(x)
ddx(tan(x))=sec2(x)
ddx(cot(x))=csc2(x)
ddx(sec(x))=sec(x)tan(x)
ddx(csc(x))=csc(x)cot(x)
Note 2.4.3.

Derivatives of the "co-" funtions are all negative in sign.

Figure 2.4.4. Slopes
The value of cos(x) describe the slopes of sin(x).

Similarly, we could consider the graph of cos(x); values of sin(x) describe slopes of cos(x).