Skip to main content

Section 2.6 Implicit Differentiation

Sometimes we have an equation that can't easily be solved for y, for example: x3+3y3=3xy.

It helps to consider y=y(x). With that consideration, it might be possible to calculate dydx.

Differentiate x3+3y3=3xy:

ddx(x3+3y3)=ddx(3xy)ddx(x3)+ddx(3y3)=3xâ‹…dydx+yâ‹…ddx(3x)(separate the terms)3x2+3â‹…3y2dydx=3xâ‹…dydx+yâ‹…3(apply the chain rule)3x2+9y2dydx=3xdydx+3y(solve for dydx)9y2dydx−3xdydx=3y−3xdydx(9y2−3x)=3y−3xdydx=3y−3x9y2−3x
Example 2.6.1.

Find the slope of the tangent to x2+y2=1, at the point (12,32):

x2+(y(x))2=1(treat y as y(x))ddx(x2+(y(x))2)=ddx(1)2x+2y⋅dydx=02y⋅dydx=−2xdydx=−xy

At (12,32), Mtan=−1232=−13

Figure 2.6.1.