Section 9.4 Convergence Tests
The notation \(\displaystyle \sum_{n=1}^{\infty} a_n\) can also be represented generally by \(\sum a_n\text{.}\)
Note 9.4.1.
Subsection 9.4.1 Divergence Test
Consider a series \(\sum a_n\text{:}\)
if \(\displaystyle \lim_{n\to\infty} a_n \neq 0\text{,}\) then \(\sum a_n\) diverges
if \(\displaystyle \lim_{n\to\infty} a_n = 0\text{,}\) then the test is inconclusive and could converge or diverge
Another way of stating this is, if \(\sum a_n\) converges then \(\displaystyle \lim_{n\to\infty} a_n = 0\text{.}\)
Example 9.4.1.
Consider:
Subsection 9.4.2 Algebraic Properties of Series
-
If \(\sum a_n\) and \(\sum b_n\) are convergent series then \(\sum (a_n \pm b_n) \) also coverge, further
\begin{equation*} \sum (a_n \pm b_n) = \sum a_n \pm \sum b_n \end{equation*} -
If \(c\) is a nonzero constant then, \(\sum a_n\) and \(\sum (c a_n)\) both converge or both diverge. If they converge:
\begin{equation*} \sum c a_n = c(\sum a_n) \end{equation*} -
Convergence or divergence is unaffected by deleting a finite number of terms from a series. In particular, fro any positive integer \(k\) the two series:
\begin{equation*} \sum_{n = 1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots \end{equation*}and
\begin{equation*} \sum_{k = 1}^{\infty} a_n = a_k + a_{k+1} + a_{k+2} + \dots \end{equation*}both converge or both diverge.
Example 9.4.2.
Find the sum of the series:
Subsection 9.4.3 Integral Test
There are two possibilities:
if \(\displaystyle \int_0^{\infty} f(x) dx\) converges, then \(\displaystyle \sum a_n\) converges
if \(\displaystyle \int_0^{\infty} f(x) dx\) diverges, then \(\displaystyle \sum a_n\) diverges
Definition 9.4.4. Integral Test.
Let \(\displaystyle \sum a_n\) be a series with positive terms. If \(f\) is a function that is decreasing and continuous on the interval \([a,\infty)\) such that \(a_n = f(n)\) for all \(n \geq a\) then
both coverge or both diverge.
Example 9.4.3.
Determine if \(\displaystyle \sum_{n = 1}^{\infty} \dfrac{1}{n}\) converges or diverges.
Consider \(\displaystyle \int_1^{\infty} \dfrac{1}{x} dx\text{:}\)